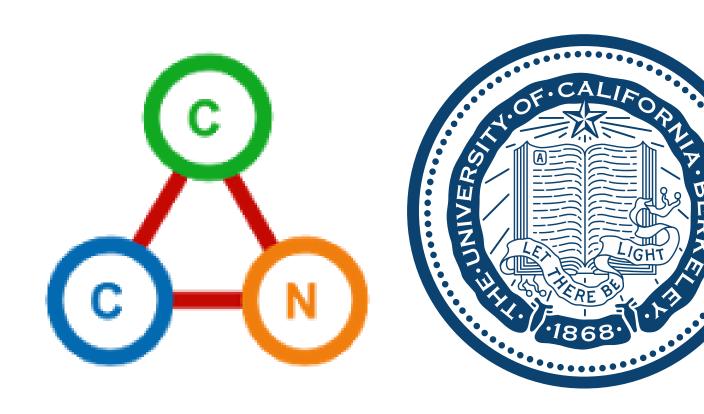


Hierarchical Reinforcement Learning enables flexible transfer in humans



Liyu Xia, Anne G.E. Collins. University of California, Berkeley.

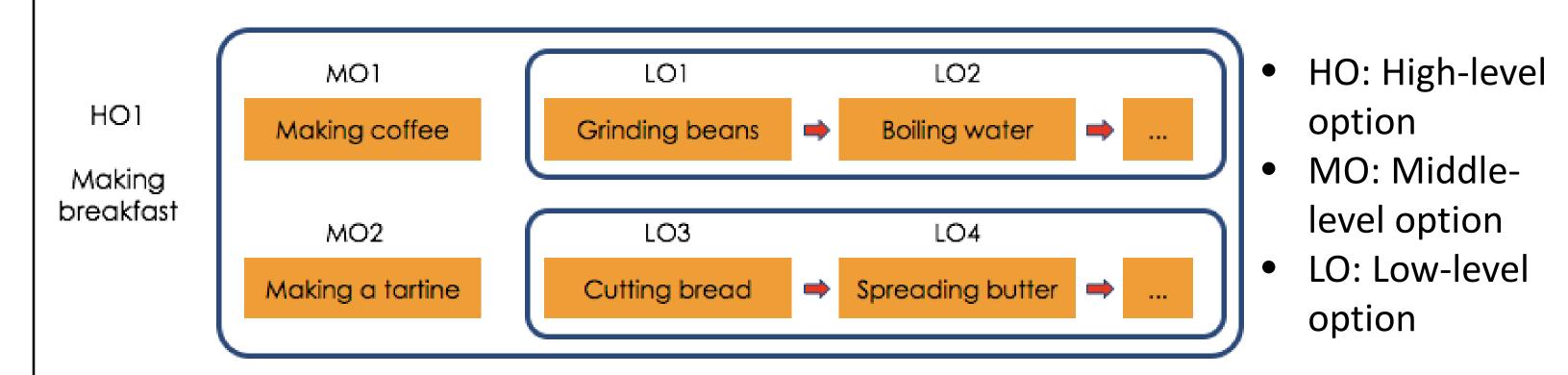
Poster C134

Introduction

Traditional reinforcement learning (RL) has 2 major limitations:

- 1. Cannot scale up to complex tasks that humans face.
- 2. **Cannot** explain how humans transfer previously learned skills to novel contexts.

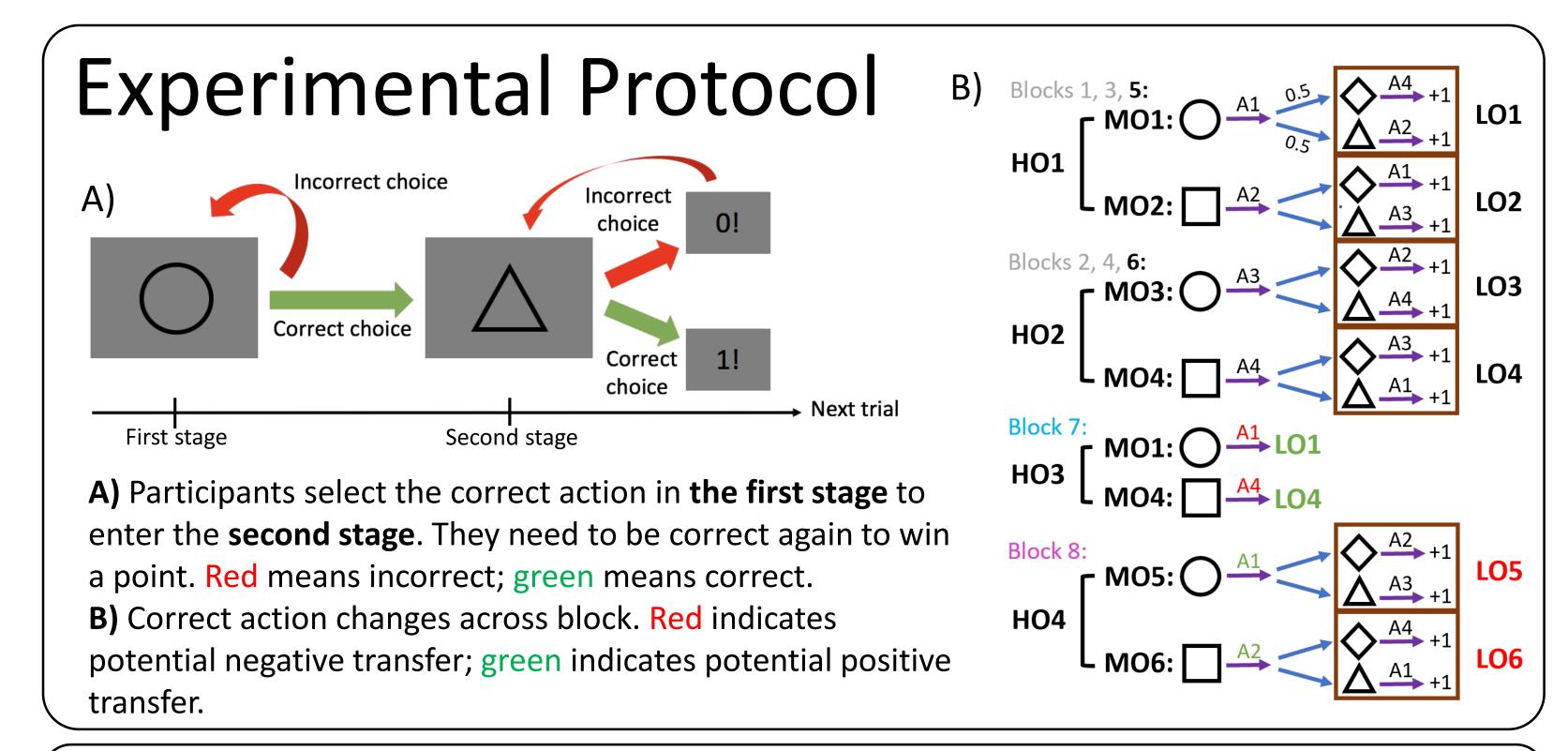
With the observation that human behavior is hierarchical [1], recent studies proposed **the options framework** [2] from Hierarchical Reinforcement Learning (HRL) which provides many theoretical benefits [3]. Options are temporally-extended policies composed of primitive actions and/or smaller options.



Prior work showed humans can learn 1-step policies (or task sets), and are able to transfer them to novel contexts [4].

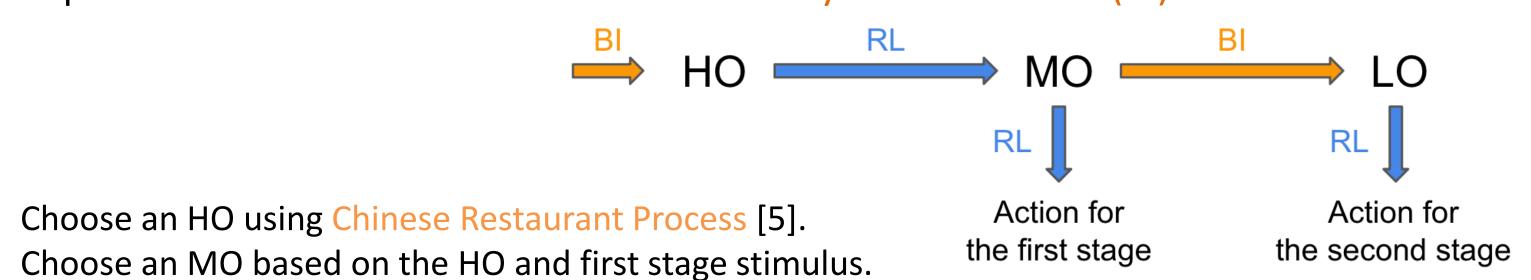
Questions:

- 1. Do humans learn options? At multiple levels?
- 2. If so, can humans transfer learned options?



Option Model:

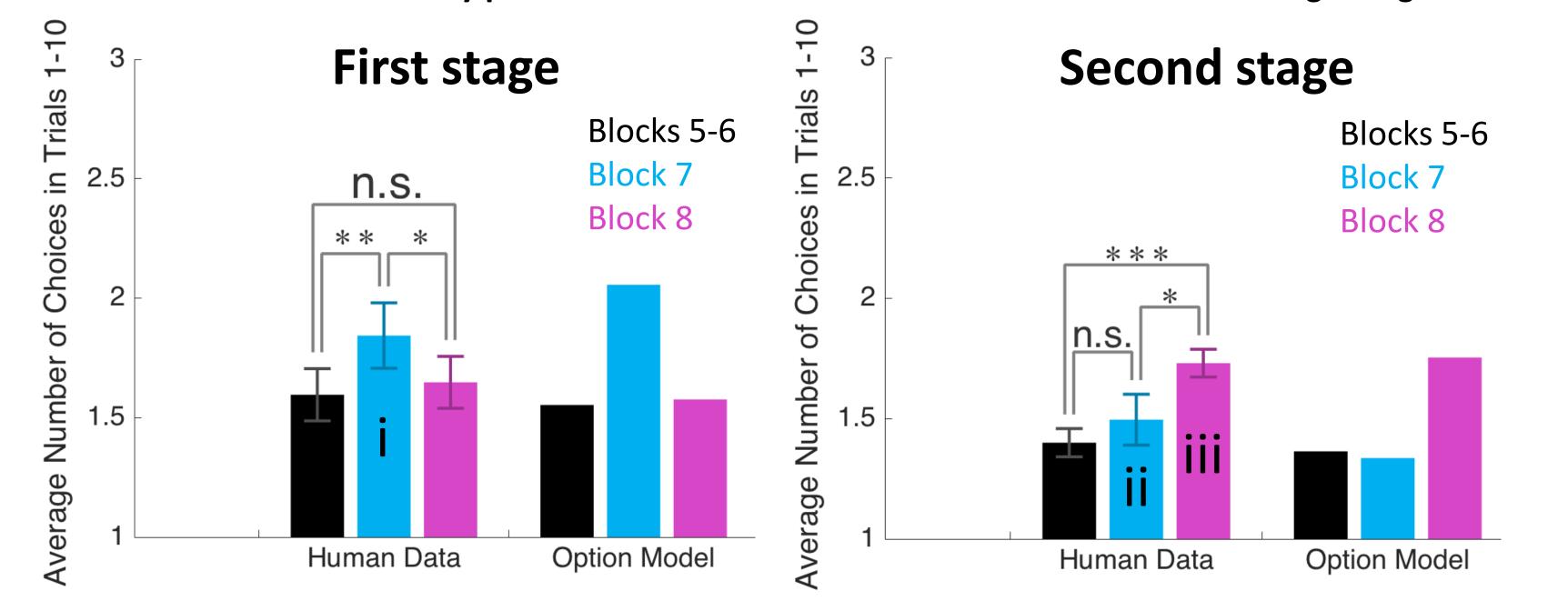
The option model is a combination of HRL and Bayesian inference (BI).



- 3. Choose an action for the first stage based on the policy dictated by the MO.
- 4. Choose an LO based on the MO's policy. This policy is learned by BI.
- 5. Choose an action for the second stage based on the policy dictated by the LO.

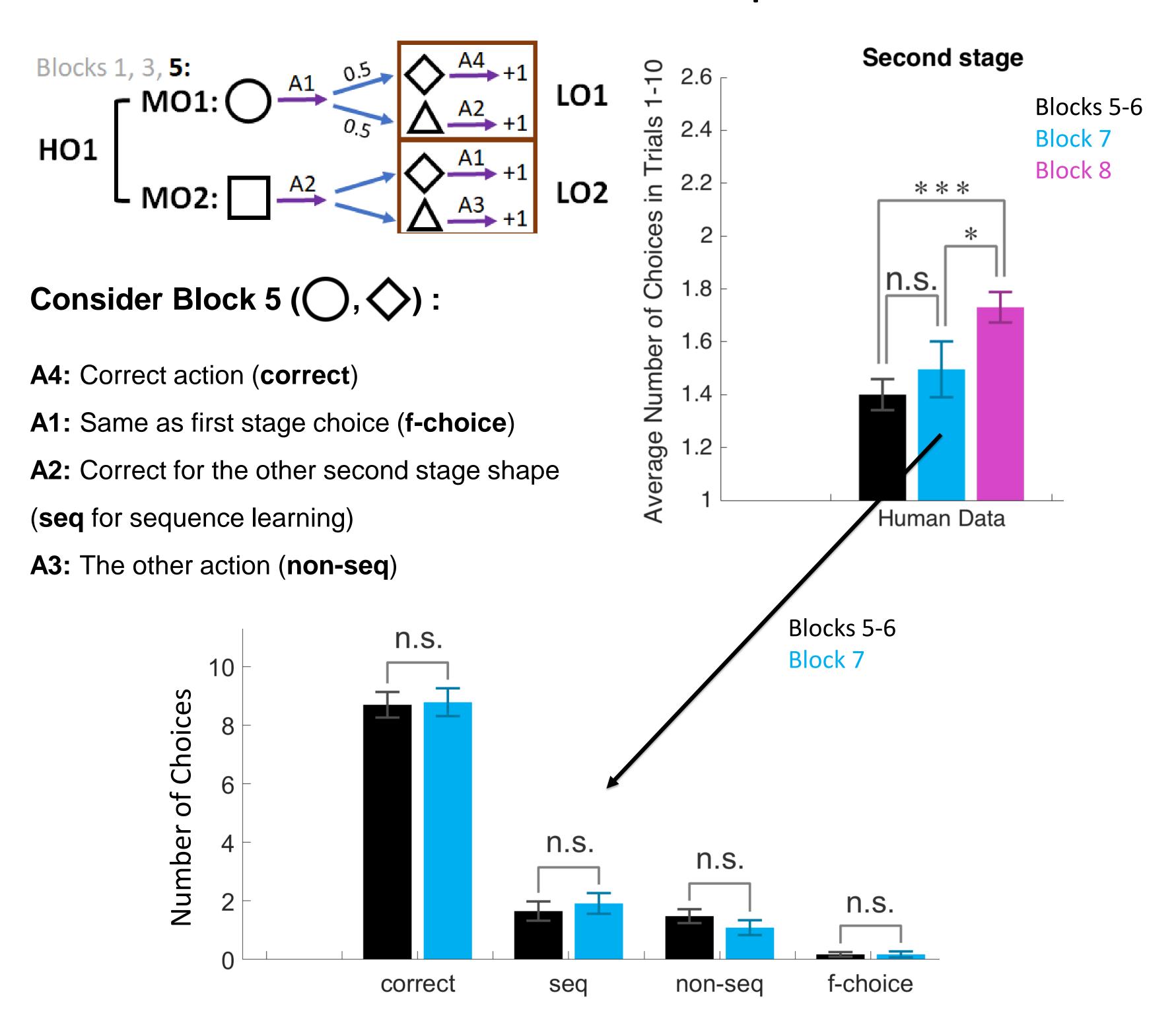
Behavioral results support model predictions

We counted the number of key presses in the first 10 trials for transfer effects at the beginning of a block.



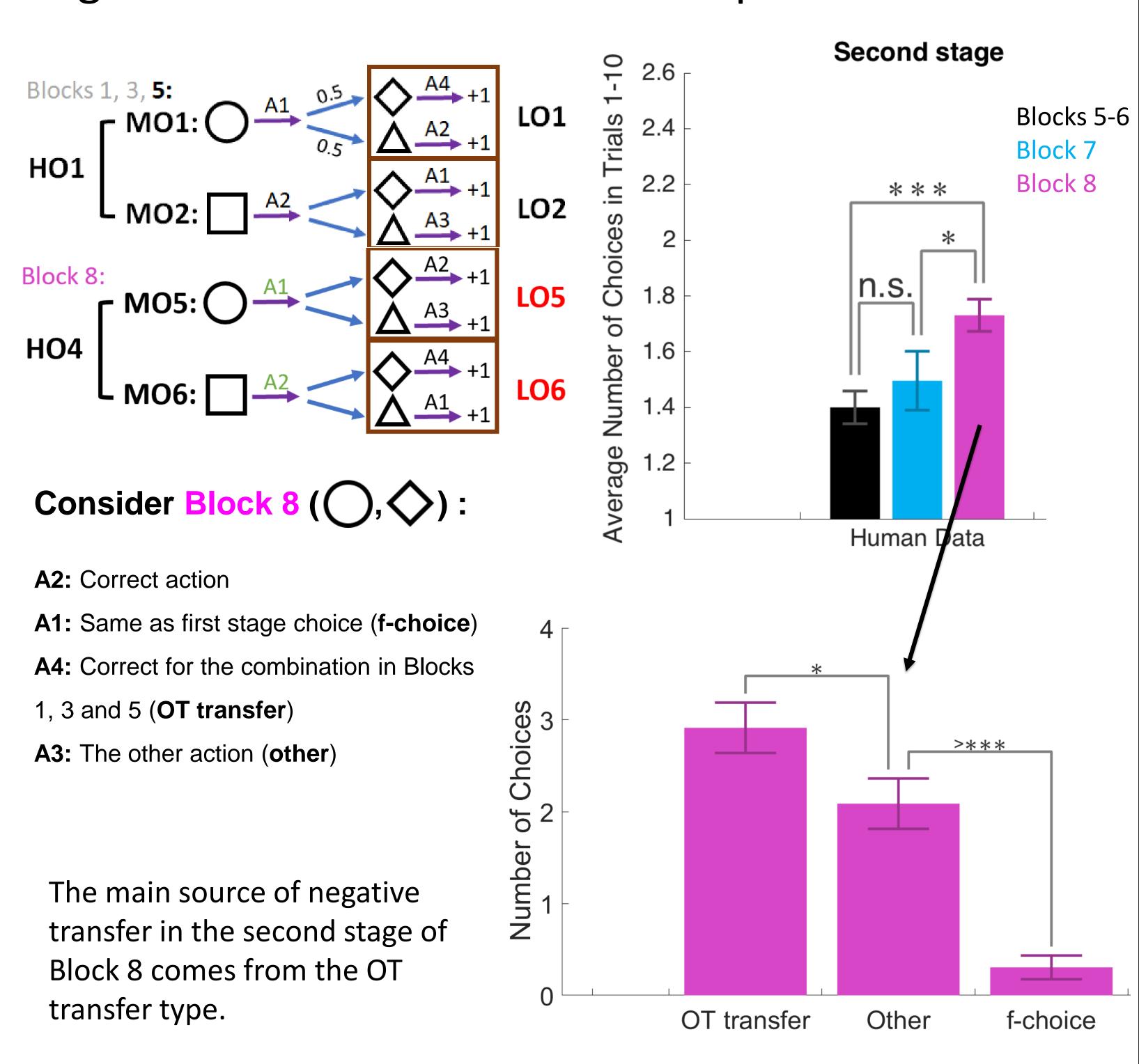
- 1. Behavioral data provides initial evidence for different transfer effect at both stages: (i) Negative transfer in Block 7 First stage
- (ii) No negative transfer in Block 7 Second stage(iii) Negative transfer in Block 8 Second stage
- 2. Option model simulations reproduce qualitative effects in behavioral data. No traditional flat RL can reproduce these transfer effects.

Positive transfer of middle-level options in Block 7



- 1. There is **no** significant difference between the second stage of Blocks 5-6 and Block 7 across all choice types, indicating that participants were able to flexibly transfer middle-level options as a whole even in the presence of interference from negative transfer in the first stage of Block 7.
- 2. We also compare the RT between **seq** and **non-seq** types and find no significant difference, indicating that the transfer effects cannot be explained by sequence learning alone.

Negative transfer of middle-level options in Block 8



Conclusions

Summary

- Humans learn temporally-extended policies called options, confirmed by both positive and negative transfer effects.
- Humans are able to flexibly transfer options at different levels.
- The Option Model captures transfers in human behavior qualitatively.
- Sequence learning alone cannot account for the transfer effects.

Future directions

- What is the neural underpinning of option learning? Is there any difference in the neural representation of 1-step policies and options?
- In novel contexts, do humans learn a new option, or rewrite an old one that is similar enough?

Bibliography

[1] Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. *Trends in cognitive sciences*, 12(5), 201-

[2] Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2), 181-211.

[3] Botvinick, M. M., Niv, Y., & Barto, A. C. (2009). Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. *Cognition*, 113(3), 262-280.

[4] Collins, A. G., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. *Psychological review*, 120(1), 190.

[5] Aldous, D. J. (1985). Exchangeability and related topics. In *École d'Été de Probabilités de Saint-Flour XIII—1983* (pp. 1-198). Springer, Berlin, Heidelberg.