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Abstract

Humans are great at using prior knowledge to solve novel tasks, but how they do
so is not well understood. Recent work showed that in contextual multi-armed
bandits environments, humans create simple one-step policies that they can transfer
to new contexts by inferring context clusters. However, the daily tasks humans face
are often temporally extended, and demand more complex, hierarchically struc-
tured skills. The options framework provides a potential solution for representing
such transferable skills. Options are abstract multi-step policies, assembled from
simple actions or other options, that can represent meaningful reusable skills. We
developed a novel two-stage decision making protocol to test if humans learn and
transfer multi-step options. We found transfer effects at multiple levels of policy
complexity that could not be explained by flat reinforcement learning models. We
also devised an option model that can qualitatively replicate the transfer effects in
human participants. Our results provide evidence that humans create options, and
use them to explore in novel contexts, consequently transferring past knowledge
and speeding up learning.

1 Introduction

Reinforcement Learning (RL) has greatly helped advance our understanding of human behavior.
However, traditional RL algorithms suffer from the curse of dimensionality [1, 2], thus cannot account
for the full complexity of human learning. To address this, [3] proposed the options framework.
Options are temporally-extended multi-step policies assembled from simple actions or other options
to achieve a meaningful sub-goal. Consider making coffee as an example option. We can break
down the task into sub-options such as grinding coffee beans, boiling water, etc. These sub-options
can be further divided until something as simple as reaching, grabbing, etc. The options framework
provides many theoretical benefits, including more efficient exploration and longer-term planning [1,
2]. Moreover, recent literature [4, 5] provides potential evidence that humans may indeed use options
in hierarchical tasks. In particular, [4, 5] showed that humans are able to infer meaningful sub-goals
and form reward prediction error (RPE) signals for both the sub-goal and the overall goal.

However, how humans learn and transfer options remain unclear. There is little work on probing
the learning dynamics in hierarchical tasks or directly testing the theoretical benefits of options
in a behavioral setting. To address these questions, we took inspiration from the transfer learning
paradigm [6, 7] proposed for a similar problem in the case of simpler one-step policies. [6, 7] showed
that humans can create multiple policies over the same state space in a context-dependent manner;
more importantly, humans can cluster different contexts together if the policy is successful. This
clustering structure provides opportunities for transfer, since anything newly learned for one of the
contexts can be immediately generalized to all the others in the same cluster. Moreover, human
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participants are able to identify novel contexts as part of an existing cluster if there is enough overlap
in behavioral strategies, resulting in more efficient exploration and faster learning.

Here we extended the transfer learning paradigm [6, 7] from one-step to multi-step options to
behaviorally test option learning and transfer in human participants. We hypothesized that humans
can learn and transfer options to guide exploration and speed up learning. These benefits can serve as
behavioral signatures that test option transfer. Results support our hypotheses.

2 Experimental design

Figure 1: Experimental design. (A) Block and trial structure: Blocks 1-6 were learning blocks,
followed by two testing blocks: Blocks 7 and 8. Each block had 60 trials. In each trial, participants
needed to select the correct response for the first stage stimulus F in order to move on to the second
stage stimulus S, where they could win points by selecting the correct response for S. (B) Stimulus-
action assignments: In Blocks 1-6, participants had the opportunity to learn options at three levels of
complexity: high, middle, and low-level options (HO,MO, and LO). In the testing phase, Block 7
tested participants’ ability to reuse MO policies outside of their HO context; Block 8 tested negative
transfer of MO policies in the second stage. Blocks were color coded for later analysis: Blocks 1-4
gray; Blocks 5-6 black; Block 7 blue; Block 8 magenta.

The experiment was approved by the UC Berkeley Institutional Review Board. 34 (22 female) UC
Berkeley undergraduates participated in exchange for course credits. 7 were excluded for incomplete
data or below chance performance, resulting in 27 subjects for data analysis.

The experiment consisted of eight blocks, with optional 20-second breaks in between (Fig. 1A).
In each block, the participants used deterministic feedback to learn which of four keys to press for
four different shapes. Two shapes were randomly chosen to be first stage stimuli (e.g. circle and
square); and the other two were second stage stimuli (e.g. diamond and triangle). Each trial started
with either of the first stage stimuli. Participants only moved to the second stage when they pressed
the correct key for the first stage stimulus, after which either of the second stage stimuli would be
randomly chosen to be presented. Both first stage stimuli led to both second stage stimuli equally
often. Participants did not receive reward feedback after making choices in the first stage, other than
seeing the same stimulus if they were incorrect, or switching to a different (second stage) stimulus if
they were correct. In the second stage, participants also needed to select the correct key before they
could move to another trial. Participants received 1 point for choosing the correct key, and 0 point
for incorrect keys. Each block contained 60 trials, with each of first stage stimuli leading to each of
second stage stimuli 15 times, all pre-randomized.

The correct stimulus-action assignments (Fig. 1B) changed across blocks. Blocks 1, 3, 5 shared the
same assignments; Blocks 2, 4, 6 shared the same assignments. Blocks 7 and 8 tested transfer of
options at various levels. Specifically, the protocol was set up so that participants could learn up to
3 levels of hierarchical task structure: low-level options (LO) for second stage policies; mid-level
options (MO) for the pairing of first and second stage policies; high-level options (HO) for policies
over MO’s. Imagine in Blocks 1, 3, 5, the participants learned how to make breakfast (HO1),
consisting of toast (MO1) and milk (MO2). Making toast was broken down into cutting bread (the
first stage) and spreading butter (the second stage, LO1). In Blocks 2, 4, 6, participants learned how
to make lunch (HO2), consisting of coffee (MO3) and spaghetti (MO4). Coffee making was broken
into grinding beans (the first stage) and boiling water (the second stage, LO3). Block 7 combined
the policies for toast from breakfast (MO1) and spaghetti from lunch (MO4) to form HO3. Block 8
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shared the same assignments as Blocks 1, 3, 5 in the first stage, but the second stage was new: for
example, participants needed to use bread to make sandwiches (LO5) instead of toast (LO1).

3 Modeling

We simulated and compared 4 RL models with human data. All models were simulated 500 times
with one set of chosen parameters.

3.1 The Option Model

We simulated the Option Model, an implementation of the options framework on the same task. In the
first stage, the model tracks the probability P 1 of selecting each HOi in different first stage contexts
c1j , which encodes the current Block (temporal) context. In particular, the model runs a Chinese
Restaurant Process (CRP) [8] to select HO: if contexts {c11:n} are clustered on N1 ≤ n HO′s, when
the model encounters a new context c1n+1, the prior probability of selecting a new HOn+1 is set
to P 1(HOn+1|c1n+1) = γ1/Z1;P1(HOi|c1n+1) = N1

i /Z
1, where N1

i is the number of first stage
contexts clustered onHOi, andZ1 = γ1+

∑
iN

1
i . The newHOn+1 is initialized with uninformative

Q-values 1/#{possible actions} = 1/4. The model selects HO with the highest probability in the
current context. Once an HO is selected, an action is sampled from the HO-specific policy based
on the Q-values for first stage stimulus F : P (A1

i |F,HO) = exp(β1 ∗Q1
HO(F,A

1
i ))/

∑
j exp(β

1 ∗
Q1

HO(F,A
1
j )). After observing the outcome, the model uses Bayesian inference to update P 1:

P 1(HOi|c1j ) = P (r|F,A1, HOi)P (HOi|c1j )/(
∑

k P (r|F,A1, HOk)P (HOk|c1j )), where r is 1 if
A1 is correct or 0 otherwise. Then the policy of the HO with the highest posterior probability is
updated with Q-learning: Q1

HO(F,A
1) = Q1

HO(F,A
1) + α1 ∗ (r −Q1

HO(F,A
1)).

To simplify credit assignment, we assumed that selecting an action for a first stage stimulus activates
anMO: for example, selectingA1 for circle activatesMO1 (Fig. 1B). EachMO has anMO-specific
probability table P 2

MO similar to P 1 in the first stage, which guides LO selection in the second stage.
The second stage is identical to the first stage, except that the second stage contexts for CRP are
determined by which MO is activated. Thus the second stage parameters are α2, β2 and γ2.

To better account for human behavior, we included two forgetting parameters, f1 and f2, and a
meta-learning parameter m. At each choice, the model decays all Q-values for the first stage based
on f1: Q1

HO(Fi, A
1
j ) = (1 − f1) ∗ Q1

HO(Fi, A
1
j ) + f1 ∗ 1/4. Forgetting in the second stage was

implemented similarly. The meta-learning parameter m discourages selecting the same action in the
second stage as in the first stage. To closely capture human behavior, we simulated the Option Model
with α1 = 1, β1 = 2, γ1 = 14, f1 = 0.0004, α2 = 0.8, β2 = 3, γ2 = 3, f2 = 0.0002,m = 0.01.
However, the qualitative results of the model hold for a wide range of parameters.

3.2 The 1-Step Transfer Model

The 1-Step Transfer Model has the capability of transferring previously learned 1-step policies. It
only differs from the Option Model in that the CRP in the second stage is independent of that in the
first stage (in the Option Model, the second stage CRP depends on which MO is activated in the first
stage). We simulated the 1-Step Transfer Model with the same parameters as the Option Model.

3.3 The Naive Flat Model

The Naive Flat Model learns the Q-values for the two first stage stimuli with learning rate α1, inverse
temperature β1 and forgetting rate f1. However, it disregards the non-Markovian nature of the task:
it learns the Q-values for the two second stage stimuli (with α2, β2, f2), without remembering the
first stage stimulus. When entering in a new block, the Naive Flat Model has to re-learn all Q-values
from scratch. The Naive Flat model also has a meta-learning parameter m. We simulated the Naive
Flat Model with α1 = 0.5, β1 = 4, f1 = 0.0025, α2 = 0.7, β2 = 10, f2 = 0.0001,m = 0.01.
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3.4 The Flat Model

The Flat Model is identical to the Naive Flat Model, except that in the second stage, the Flat Model
treats the 4 combinations of the first and second stage stimuli as 4 distinct states. We simulated the
Flat Model with the same set of parameters as the Naive Flat Model.

4 Results

Figure 2: Behavioral and modeling results. (A) Block 1-8: average number of key presses. (B)
Block 5-8 first stage: average number of key presses in the first 10 trials for human participants and
4 competing models. (C) Block 5-8 second stage: same as (B) for the second stage. (D) Block 8
second stage: proportion of choice types for human participants, the Option Model, and the 1-Step
Transfer Model. (E) Block 7-8 second stage: correct probability of first press for human participants
and the Option Model. (F) Block 5-7 first stage: proportion of choice types for human participants.
(G) Block 5-7 first stage: same as (F) for the Option Model.

4.1 Participants do not use flat RL

We use the number of key presses until correct choice in each stage of a trial as an index of
performance. Ceiling performance is 1 press per stage in a trial. Chance level is 2.5, assuming
participants randomly choose each of the four keys without repetition. Participants learned the correct
actions in both the first and second stage, as shown by better than chance and improving performance
over Blocks 1-6 (Fig. 2A). We used the average of Blocks 5 and 6 as a benchmark for comparing
against Blocks 7 and 8.

To probe potential transfer effects, we counted the average number of key presses in the first 10 trials
of each block (Fig. 2B-C), since we only expected transfer effects at the beginning of each block,
before behavior stabilized. In the first stage (Fig. 2B), participants pressed more times in Block 7
than Block 8 (paired t-test, P = 0.0014) and the average of Blocks 5 and 6 (paired t-test, P = 0.0038);
there was no significant difference between Block 8 and the average of Blocks 5 and 6 (paired t-test,
P = 0.3592). These results suggest participants negatively transferred HO in the first stage of Block
7, and positively transferred HO in the first stage of Block 8, as predicted.

In the second stage (Fig. 2C), participants pressed more times in Block 8 than Block 7 (paired t-test,
P = 0.014) and the average of Blocks 5 and 6 (paired t-test, P < 0.001); there was no significant
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difference between Block 7 and the average of Blocks 5 and 6 (paired t-test, P = 0.1486). These
results suggest participants positively transferred LO in the second stage of Block 7, and negatively
transferred LO in the second stage of Block 8.

Among the simulations of 4 models (Fig. 2B-C), only the Option Model and the 1-Step Transfer
Model could account for all transfer effects so far. The Naive Flat Model cannot achieve reasonable
performance in the second stage because it ignores the non-Markovian nature of the task. The Flat
Model achieves reasonable performance on the task, but does not demonstrate any transfer effects.

4.2 Second stage choices reveal option transfer

Specific errors participants make can reveal the structure they use to make decisions. To further
disambiguate between the Option Model and the 1-Step Transfer Model, we categorized their errors
into meaningful choice types [6]. For example, for the second stage of Block 8, consider the diamond
following the circle in Block 8 (Fig. 1B): A2 is the correct action; an A1 error corresponds to the
correct action in the first stage (“f-choice” type); an A4 error would be the correct action if selecting
MO1 as a whole(“option transfer” type); an A3 error is labeled “other” type. Among the 3 error
types (Fig. 2D), there were more “option transfer” type than the “other” type (paired t-test, P =
0.046), suggesting participants selected previously learned MO’s as a whole. The Option Model
can reproduce this effect. The 1-Step Transfer Model cannot: because the two CRPs in the first and
second stages are independent, first stage choices do not inform second stage choices. Therefore, the
choice type profile in Block 8 cannot be explained by transfer of 1-step policies alone.

We also computed the correct probability on the first press for the 4 branches in the second stage
(2 branches following the circle and another 2 following the square, see Fig. 1B) (Fig. 2E), and
compared to chance (1/3, accounting for meta-learning that the correct action in the second stage
was always different from the first stage). Correct probability in Block 7 and the average of Blocks
5 and 6 were significantly higher than chance (sign-test, P(Block 7) = 0.0192, P(Blocks 5 and 6)
< 0.001), without significant difference between the two (sign-test, P = 0.1892). Thus, there was
positive transfer in the very first trials of Block 7. Block 8 was significantly below chance (sign-test,
P = 0.0059), independently indicating negative transfer of learned mid-level options in the very first
trials. The Option Model was able to qualitatively reproduce these transfer effects on the first press.

Positive transfer in the second stage of Block 7 was not affected by interference from the first stage of
Block 7. Moreover, the worse performance in the second stage of Block 8 was mainly due to negative
transfer of learned options (MO’s) based on choice type analysis. Finally, the transfer effects on the
first press of each block suggests that participants were using previously learned options to speed up
learning in novel contexts without any experience in a new block.

4.3 First stage choices reveal transfer of policies over options

We hypothesized that the more key presses in Block 7 (Fig. 2B) was due to selecting the wrong HO.
To test this, we also categorized error choices into 3 types. For example, consider the circle in Blocks
1, 3, 5 (Fig. 1B): A1 is the correct action; an A2 error corresponds to the correct action for the square
in the same block (“wrong shape” type); an A3 error corresponds to the correct action for the circle
in Blocks 2, 4, 6 (“wrong HO” type), and an A4 error is the “both wrong” type. We found that,
compared to the average of Blocks 5 and 6 (Fig. 2F), the only error type that significantly increased
in Block 7 was the “wrong HO” type (paired t-test, P = 0.0319). This suggests that the decreased
performance in Block 7 was primarily due to selecting the wrong HO, highlighting negative transfer
of options over options. The Option Model reproduces this transfer effect (Fig. 2G).

5 Conclusion

Our findings provide novel and strong support for the acquisition of option representation in human
participants. The second stage of Block 7 provides a test of positive option transfer, whereas the
second stage of Block 8 provides a test of negative option transfer. Moreover, participants were
able to form policies over options (HO); this additional hierarchy built on top of MO did not
interfere with the transfer of MO, demonstrating flexibility in transfer. Participants were also able to
transfer previously learned options on the first press to speed up learning in novel contexts, further
demonstrating the theoretical benefits of the options framework.
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